Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.635
Filtrar
1.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
2.
Food Funct ; 15(8): 4079-4094, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563230

RESUMO

Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a ß-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its ß-glucan structure and functions in gut microbiota.


Assuntos
Dendrobium , Etanol , Gastrite , NF-kappa B , Polissacarídeos , Dendrobium/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Masculino , Camundongos , NF-kappa B/metabolismo , NF-kappa B/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Extratos Vegetais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Substâncias Protetoras/farmacologia
3.
Food Chem ; 448: 139157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569411

RESUMO

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Assuntos
Helicobacter pylori , Interleucina-17 , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Paladar , Digestão , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/imunologia , Linhagem Celular
4.
Front Biosci (Landmark Ed) ; 29(3): 127, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538255

RESUMO

BACKGROUND: Gastric cancer (GC) stands as one of the most prevalent cancer types worldwide, holding the position of the second leading cause of cancer-related deaths. Gastric lesions represent pathological alterations to the gastric mucosa, with an elevated propensity to advance to gastric cancer. Limited research has explored the potential of stem cells in the treatment of gastric lesions. METHODS: This study aimed to explore the potential of intravenous transplantation of labeled bone marrow-derived mesenchymal stem cells (BMMSCs) to inhibit the progression of precancerous gastric lesions. RESULTS: In the gastric lesion disease model group, the rat tissue exhibited noteworthy mucosal atrophy, intestinal metaplasia, dysplasia, and inflammatory cell infiltration. Following the infusion of BMMSCs, a notable decrease in gastric lesions was found, with atrophic gastritis being the sole remaining lesion, which was confirmed by morphological and histological examinations. BMMSCs that were colonized at gastric lesions could differentiate into epithelial and stromal cells, as determined by the expression of pan-keratin or vimentin. The expression of vascular endothelial growth factor was significantly elevated following BMMSC transplantation. BMMSCs could also upregulate the production of humoral immune response cytokines, including interleukin (IL)-4 and IL-10, and downregulate the production of IL-17 and interferon-gamma, which could be highly associated with the cellular immune response and inflammation severity of the lesions. CONCLUSIONS: BMMSC transplantation significantly reduced inflammation and reversed gastric lesion progression.


Assuntos
Células-Tronco Mesenquimais , Lesões Pré-Cancerosas , Neoplasias Gástricas , Ratos , Animais , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Medula Óssea/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Lesões Pré-Cancerosas/terapia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia
5.
J Agric Food Chem ; 72(14): 7933-7942, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546719

RESUMO

Ethanol (EtOH) has been identified as a potential pathogenic factor in gastric ulcer development primarily due to its association with gastric injury and excessive production of reactive oxygen species. Magnolol (Mag), the principal active compound in Magnolia officinalis extract, is well studied for its notable anti-inflammatory and antioxidant properties. However, its limited solubility, propensity for agglomeration, and low absorption and utilization rates significantly restrict its therapeutic use. This study aims to overcome these challenges by developing a Mag nanoparticle system targeting the treatment and prevention of EtOH-induced gastric ulcers in mice. Utilizing a click chemistry approach, we successfully synthesized this system by reacting thiolated bovine serum albumin (BSA·SH) with Mag. The in vitro analysis revealed effective uptake of the BSA·SH-Mag nanoparticle system by human gastric epithelial cells (GES-1), showcasing its antioxidant and anti-inflammatory capabilities. Additionally, BSA·SH-Mag exhibited gradual disintegration and release in simulated gastric fluid, resulting in a notable reduction of oxidative stress in gastric tissues and mucosal tissue repair and effectively reducing inflammatory expression. Furthermore, BSA·SH-Mag attenuated EtOH-induced gastric inflammation by decreasing the level of NOX4 protein expression and augmenting the level of Nrf2 protein expression. In conclusion, our findings indicate that BSA·SH-Mag represents a promising candidate as an oral therapeutic for gastric ulcer treatment.


Assuntos
Compostos de Bifenilo , Lignanas , Nanopartículas , Úlcera Gástrica , Camundongos , Humanos , Animais , Etanol/efeitos adversos , Etanol/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Mucosa Gástrica/metabolismo
6.
Environ Pollut ; 347: 123676, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442821

RESUMO

Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the ß-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.


Assuntos
Clorpirifos , Helicobacter pylori , Praguicidas , Helicobacter pylori/genética , Mucosa Gástrica/metabolismo , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Virulência , Endossulfano/toxicidade , Células Epiteliais , Praguicidas/metabolismo
7.
Sci Rep ; 14(1): 6193, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486044

RESUMO

Gastric ulcers are a type of digestive disease that can severely affect a person's quality of life. Our study aimed to investigate the effects of fish oil on ethanol-induced gastric ulcers in rats, with the purpose of providing more comprehensive information on the topic. The study looked at various factors such as gastric ulcer index, and nitric oxide (NO) levels in stomach tissue. To investigate apoptosis, the mRNA levels of Bax, Bcl-2, and Caspase 3 were analyzed. The results showed that fish oil can reduce gastric acidity and the gastric ulcer index in cases of ethanol-induced gastric ulcers. It was found that fish oil can increase NO levels and improve the anti-apoptotic system by increasing the expression of Bcl-2 while decreasing the expression of Bax and Caspase 3. In general, the study demonstrates that fish oil can protect the stomach from ethanol-induced damage by reducing the apoptosis pathway via nitric oxide.


Assuntos
Úlcera Gástrica , Humanos , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Caspase 3/metabolismo , Mucosa Gástrica/metabolismo , Óxido Nítrico/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Óleos de Peixe/efeitos adversos , Qualidade de Vida , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Apoptose
8.
Toxicol Appl Pharmacol ; 484: 116880, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447874

RESUMO

Gastric ulcer (GU) is a serious upper gastrointestinal tract disorder that affects people worldwide. The drugs now available for GU treatment have a high rate of relapses and drug interactions, as well as mild to severe side effects. As a result, new natural therapeutic medications for treating GU with fewer negative side effects are desperately needed. Because of quercetin's (QCT) diverse pharmacological effects and unique structural features, we decided to semi-synthesize new QCT derivatives and test them for antiulcer activity. Docking assays were performed on the synthesized compounds to determine their affinity for TLR-4/MD-2, MyD88/TIR, and NF-κB domains, an important inflammatory pathway involved in GU development and progression. Mice were given oral famotidine (40 mg/kg/day), QCT, QCT pentamethyl (QPM), or QCT pentaacetyl (QPA) (50 mg/kg/day) for 5 days before GU induction by a single intraperitoneal injection of indomethacin (INDO; 18 mg/kg). QPM and QPA have a stronger binding affinity for TLR-4/MD-2, MyD88/TIR and NF-κB domains than QCT. In comparison, they demonstrated the greatest reduction in ulcer score and index, gastric MDA and nitric oxide (NO) contents, MyD88 and NF-κB expressions, and gastric TLR-4 immunostaining. They also enhanced the levels of GSH, CAT, COX-1, and COX-2 in the gastric mucosa, as well as HO-1 and Nrf2 expression, with histological regression in gastric mucosal lesions, with QPA-treated mice demonstrating the best GU healing. QPA is safe against all of the target organs and adverse pathways studied, with good ADME properties. However, further in vitro experiments are necessary to demonstrate the inhibitory effects of QPM and QPA on the protein targets of interest. In addition, preclinical research on its bioavailability and safety is essential before clinical management can be undertaken. Overall, the new QPA derivative could one day serve as the basis for a new class of potential antiulcer drugs.


Assuntos
Indometacina , Úlcera Gástrica , Humanos , Camundongos , Animais , Indometacina/toxicidade , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Simulação de Acoplamento Molecular , Úlcera/metabolismo , Úlcera/patologia , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia
9.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396796

RESUMO

Estrogen, well known as a female hormone, is synthesized primarily by ovarian aromatase. However, extra-glandular tissues also express aromatase and produce estrogen. It is noteworthy that aromatase in gastric parietal cells begins expression around 20 days after birth and continues secreting considerable amounts of estrogen into the portal vein throughout life, supplying it to the liver. Estrogen, which is secreted from the stomach, is speculated to play a monitoring role in blood triglyceride, and its importance is expected to increase. Nevertheless, the regulatory mechanisms of the aromatase expression remain unclear. This study investigated the influence of transforming growth factor α (TGFα) on gastric aromatase expression during postnatal development. The administration of TGFα (50 µg/kg BW) to male Wistar rats in the weaning period resulted in enhanced aromatase expression and increased phosphorylated ERK1+2 in the gastric mucosa. By contrast, administration of AG1478 (5 mg/kg BW), a protein tyrosine kinase inhibitor with high selectivity for the epidermal growth factor receptor and acting as an antagonist of TGFα, led to the suppression of aromatase expression. In fact, TGFα expression in the gastric fundic gland isthmus began around 20 days after birth in normal rats as did that of aromatase, which indicates that TGFα might induce the expression of aromatase in the parietal cells concomitantly.


Assuntos
Células Parietais Gástricas , Fator de Crescimento Transformador alfa , Ratos , Masculino , Feminino , Animais , Células Parietais Gástricas/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Ratos Wistar , Aromatase/genética , Aromatase/metabolismo , Mucosa Gástrica/metabolismo , Estrogênios/metabolismo
10.
Cell Mol Gastroenterol Hepatol ; 17(5): 671-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342299

RESUMO

Numerous recent studies using single cell RNA sequencing and spatial transcriptomics have shown the vast cell heterogeneity, including epithelial, immune, and stromal cells, present in the normal human stomach and at different stages of gastric carcinogenesis. Fibroblasts within the metaplastic and dysplastic mucosal stroma represent key contributors to the carcinogenic microenvironment in the stomach. The heterogeneity of fibroblast populations is present in the normal stomach, but plasticity within these populations underlies their alterations in association with both metaplasia and dysplasia. In this review, we summarize and discuss efforts over the past several years to study the fibroblast components in human stomach from normal to metaplasia, dysplasia, and cancer. In the stomach, myofibroblast populations increase during late phase carcinogenesis and are a source of matrix proteins. PDGFRA-expressing telocyte-like cells are present in normal stomach and expand during metaplasia and dysplasia in close proximity with epithelial lineages, likely providing support for both normal and metaplastic progenitor niches. The alterations in fibroblast transcriptional signatures across the stomach carcinogenesis process indicate that fibroblast populations are likely as plastic as epithelial populations during the evolution of carcinogenesis.


Assuntos
Mucosa Gástrica , Neoplasias Gástricas , Humanos , Mucosa Gástrica/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Carcinogênese/metabolismo , Metaplasia/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
11.
Neoplasia ; 50: 100981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422751

RESUMO

PURPOSE: Helicobacter pylori (H. pylori) is a significant risk factor for development of gastric cancer (GC), one of the deadliest malignancies in the world. However, the mechanism by which H. pylori induces gastric oncogenesis remains unclear. Here, we investigated the function of IL-6 in gastric oncogenesis and macrophage-epithelial cell interactions. METHODS: We analyzed publicly available datasets to investigate the expression of IL-6 and infiltration of M2 macrophages in GC tissues, and determine the inter-cellular communication in the context of IL-6. Human gastric epithelial and macrophage cell lines (GES-1 and THP-1-derived macrophages, respectively) were used in mono- and co-culture experiments to investigate autocrine-and paracrine induction of IL-6 expression in response to H. pylori or IL-6 stimulation. RESULTS: We found that IL-6 is highly expressed in GC and modulates survival. M2 macrophage infiltration is predominant in GC and drives an IL-6 mediated communication with gastric epithelium cells. In vitro, IL-6 triggers its own expression in GES-1 and THP-1-derived macrophages cells. In addition, these cell lines are able to upregulate each other's IL-6 levels in an autocrine fashion, which is enhanced by H. pylori stimulation. CONCLUSION: This study indicates that IL-6 in the tumor microenvironment is essential for intercellular communication. We show that H. pylori enhances an IL-6-driven autocrine and paracrine positive feedback loop between macrophages and gastric epithelial cells, which may contribute to gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , Interleucina-6/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Neoplasias Gástricas/patologia , Macrófagos/patologia , Carcinogênese/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Microambiente Tumoral
12.
J Cell Biochem ; 125(3): e30527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332574

RESUMO

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
13.
Gut Microbes ; 16(1): 2313770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334087

RESUMO

The widespread prevalence of Helicobacter pylori infection, particularly in China, contributes to the development of gastrointestinal diseases. Antibiotics have limitations, including adverse reactions and increased antibiotic resistance. Therefore, identification of novel gastrogenic probiotics capable of surviving the acidic gastric environment and effectively combating H. pylori infection has potential in restoring gastric microbiota homeostasis. Five novel strains of human gastrogenic Weizmannia coagulans (BCF-01-05) were isolated from healthy gastric mucosa and characterized using 16S rDNA identification. Acid resistance, H. pylori inhibition, and adherence to gastric epithelial cells were evaluated in in-vitro experiments and the molecular mechanism explored in in-vivo experiments. Among the gastric-derived W. coagulans strains, BCF-01 exhibited the strongest adhesion and H. pylori inhibition, warranting further in-vivo safety evaluation. Through 16S rRNA sequencing of a mouse model, BCF-01 was determined to significantly restore H. pylori-associated gastric dysbiosis and increase the abundance of potential probiotic bacteria. Furthermore, BCF-01 enhanced mucosal tight junction protein expression and inhibited the TLR4-NFκB-pyroptosis signaling pathway in macrophages, as demonstrated by qRT-PCR and western blotting.These findings highlight the potential of BCF-01 in the prevention and control of H. pylori infection. Specifically, treatment with BCF-01 effectively restored gastric microecology and improved H. pylori-mediated mucosal barrier destruction while reducing inflammation through inhibition of the TLR4-NFκB-pyroptosis signaling pathway in macrophages. BCF-01 is a promising alternative to traditional triple therapy for H. pylori infections, offering minimal side effects with high suitability for high-risk individuals.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Camundongos , Humanos , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like , Mucosa Gástrica/metabolismo , Controle de Infecções
14.
Gastric Cancer ; 27(2): 324-342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310631

RESUMO

Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1ß and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Receptor 6 Toll-Like/metabolismo , Gerbillinae , Neoplasias Gástricas/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/complicações , Mucosa Gástrica/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338956

RESUMO

Gastric cancer (GC) is one of the most common causes of cancer deaths, and GC treatments represent a large area of research. Although initially regarded as a sterile organ and unsuitable for microbial communities, the discovery of Helicobacter pylori made us realize that some microbes can colonize the stomach. In recent years, growing interest in gastric bacteria has expanded to the gut microbiota and, more recently, to the oral microbiota. Indeed, the oral-gastric-gut microbiota axis may play a crucial role in maintaining homeostasis, while changes in microbiota composition in GC patients can influence clinical outcomes. On the one hand, the microbiota and its metabolites may significantly influence the progression of GC, while anti-GC treatments such as gastrectomy and chemotherapy may significantly impact the oral-gastric-gut microbiota axis of GC patients. In this context, the role of nutritional therapies, including diet, prebiotics, and probiotics, in treating GC should not be underestimated. Wit this review, we aim to highlight the main role of the gastric, oral, and gut microbiota in GC onset and progression, representing potential future biomarkers for early GC detection and a target for efficient nutritional therapies during the course of GC.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/microbiologia
16.
Sci Rep ; 14(1): 3469, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342928

RESUMO

The aim of this study was to investigate the potential of Ipomoea carnea flower methanolic extract (ICME) as a natural gastroprotective therapy against ethanol-induced gastric ulcers, particularly in individuals exposed to ionizing radiation (IR). The study focused on the Nrf2/HO-1 signaling pathway, which plays a crucial role in protecting the gastrointestinal mucosa from oxidative stress and inflammation. Male Wistar rats were divided into nine groups, the control group received distilled water orally for one week, while other groups were treated with ethanol to induce stomach ulcers, IR exposure, omeprazole, and different doses of ICME in combination with ethanol and/or IR. The study conducted comprehensive analyses, including LC-HRESI-MS/MS, to characterize the phenolic contents of ICME. Additionally, the Nrf2/HO-1 pathway, oxidative stress parameters, gastric pH, and histopathological changes were examined. The results showed that rats treated with IR and/or ethanol exhibited histopathological alterations, increased lipid peroxidation, decreased antioxidant enzyme activity, and reduced expression levels of Nrf2 and HO-1. However, pretreatment with ICME significantly improved these parameters. Phytochemical analysis identified 39 compounds in ICME, with flavonoids, hydroxybenzoic acids, and fatty acids as the predominant compounds. Virtual screening and molecular dynamics simulations suggested that ICME may protect against gastric ulceration by inhibiting oxidative stress and inflammatory mediators. In conclusion, this study demonstrates the potential of ICME as a natural gastroprotective therapy for preventing gastric ulcers. These findings contribute to the development of novel interventions for gastrointestinal disorders using natural plant extracts particularly in individuals with a history of radiation exposure.


Assuntos
Extratos Vegetais , Úlcera Gástrica , Animais , Ratos , Antioxidantes/farmacologia , Etanol/química , Mucosa Gástrica/metabolismo , Metanol/química , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos Wistar , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/etiologia , Úlcera Gástrica/prevenção & controle , Espectrometria de Massas em Tandem , Úlcera/patologia
17.
Sci Rep ; 14(1): 1699, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242960

RESUMO

In recent times, the methods used to evaluate gastric ulcer healing worldwide have been based on visual examinations and estimating ulcer dimensions in experimental animals. In this study, the protective effect of rhodanine and 2,4-thiazolidinediones scaffolds compared to esomeprazole was investigated in an ethanol model of stomach ulcers in rats. Pretreatment with experimental treatments or esomeprazole prevented the development of ethanol-induced gastric ulcers. The severity of the lesions and injuries was significantly lower than that of vehicle (10% Tween 80) treated rats. Significant and excellent results were obtained with the compound 6 group, with inhibition percentage and ulcer area values of 97.8% and 12.8 ± 1.1 mm2, respectively. Synthesized compounds 2, 7 and 8 exhibited inhibition percentages and ulcer areas of 94.3% and 31.2 ± 1.1 mm2, 91. 3% and 48.1 ± 0. 8 mm2, 89. 5% and 57. 6 ± 1. 2 mm2, and 89. 1% and 60.3 ± 0. 8 mm2, respectively. These biological outcomes are consistent with the docking studies in which Compounds 7 and 8 showed remarkable binding site affinities toward human H+/K+-ATPase α protein (ID: P20648), rat H+/K+-ATPase α protein (ID: P09626), and Na+/K+-ATPase crystal structure (PDB ID:2ZXE) with binding site energies of - 10.7, - 9.0, and - 10.4 (kcal/mol) and - 8.7, - 8.5, and - 8.0 (kcal/mol), respectively. These results indicate that these test samples were as effective as esomeprazole. Likewise, immunohistochemical staining of antiapoptotic (BCL2) and tumor suppressor (P53) proteins showed strong positive marks in the10% Tween 80- treated group, opposing the mild staining results for the esomeprazole-treated group. Similarly, the staining intensity of the group treated with Compounds 2-8 was variable for both proteins.


Assuntos
Antiulcerosos , Rodanina , Úlcera Gástrica , Tiazolidinedionas , Humanos , Ratos , Animais , Esomeprazol/uso terapêutico , Rodanina/metabolismo , Rodanina/farmacologia , Rodanina/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Mucosa Gástrica/metabolismo , Antiulcerosos/uso terapêutico , Úlcera/patologia , Polissorbatos/farmacologia , Tiazolidinedionas/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Extratos Vegetais/farmacologia , Etanol/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adenosina Trifosfatases/metabolismo
18.
Food Funct ; 15(3): 1170-1190, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206113

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lactobacillales , Probióticos , Lactente , Animais , Humanos , Helicobacter pylori/fisiologia , Mucosa Gástrica/metabolismo , Fezes/microbiologia , Probióticos/farmacologia , Boca/patologia , Infecções por Helicobacter/microbiologia
19.
Protein Expr Purif ; 216: 106431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184161

RESUMO

Human pepsinogens (mainly pepsinogen I and pepsinogen II) are the major inactive precursor forms of the digestive enzyme pepsin which play a crucial role in protein digestion. The levels and ratios of human pepsinogens have demonstrated potential as diagnostic biomarkers for gastrointestinal diseases, particularly gastric cancer. Nanobodies are promising tools for the treatment and diagnosis of diseases, owing to their unique recognition properties. In this study, recombinant human pepsinogens proteins were expressed and purified as immunized antigens. We constructed a VHH phage library and identified several nanobodies via phage display bio-panning. We determined the binding potency and cross-reactivity of these nanobodies. Our study provides technical support for developing immunodiagnostic reagents targeting human pepsinogens.


Assuntos
Pepsinogênios , Anticorpos de Domínio Único , Humanos , Pepsinogênios/metabolismo , Anticorpos de Domínio Único/genética , Mucosa Gástrica/metabolismo , Pepsina A
20.
PLoS One ; 19(1): e0287569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271407

RESUMO

The objectives of the present study were to evaluate the acute toxicity, gastroprotective, therapeutic, anti-inflammatory and anti H. pylori activities of T. vulgaris total plant extract against ethanol-induced gastric ulcers in Sprague Dawley rats. Animals were divided into five groups i.e G-1 (Normal Control), Group 2 (ulcer control) were administered orally with 0.5% Carboxymethylcellulose (CMC), Group 3 (omeprazole treated) was administered orally with 20 mg/kg of omeprazole and Groups 4 and 5 (Low dose and High dose of the extract) were administered orally with 250, and 500 mg/ kg of Thymus vulgaris extract, respectively. After 1 hour, the normal group was orally administered with 0.5% CMC (5 ml/kg), whereas absolute alcohol (5ml/ kg) was orally administered to the ulcer control group, omeprazole group, and experimental groups. Stomachs were examined macroscopically and microscopically. Grossly, rats pre-treated with T. vulgaris demonstrated significantly decreased ulcer area and an increase in mucus secretion and pH of gastric content compared with the ulcer control group. Microscopy of gastric mucosa in the ulcer control group showed severe damage to gastric mucosa with edema and leukocytes infiltration of the submucosal layer. However, rats pretreated with omeprazole or Thyme vulgaris exhibited a mild to moderate disruption of the surface epithelium and lower level of edema and leukocyte infiltration of the submucosal layer. The T. vulgaris extract caused up-regulation of Hsp70 protein, down-regulation of Bax protein, and intense periodic acid Schiff uptake of the glandular portion of the stomach. Gastric mucosal homogenate of rats pre-treated with T. vulgaris exhibited significantly increased superoxide dismutase (SOD) and catalase (CAT) activities while malondialdehyde (MDA) level was significantly decreased. Based on the results showed in this study, Thymus vulgaris extract can be proposed as the safe medicinal plants for use and it has considerable gastroprotective potential via stomach epithelium protection against gastric ulcers and stomach lesions.


Assuntos
Antiulcerosos , Úlcera Gástrica , Thymus (Planta) , Ratos , Animais , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Úlcera/tratamento farmacológico , Etanol/toxicidade , Etanol/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Mucosa Gástrica/metabolismo , Omeprazol/efeitos adversos , Antioxidantes/metabolismo , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Edema/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...